Seaborn + SKlearn 資料分析

Seaborn資料分析 + Sklearn Seaborn 資料集中的 “tips” 是一個包含餐廳小費資料的資料集。這個資料集通常用於示範 Seaborn 中的數據可視化功能和統計分析。 “tips” 資料集包含了餐廳服務員收到的小費金額以及與小費相關的一些額外信息,例如顧客人數、就餐日期和時間、就餐者的性別、是否是吸煙區域、就餐的星期幾等等。這些信息可以用於探索性數據分析、統計分析以及建模工作。 這個資料集的結構通常包含以下幾個欄位: 這個資料集是 Seaborn 中內建的範例資料集之一,通常用於示範 Seaborn 中各種圖表的繪製和數據分析。 Seaborn 資料集中的 “diamonds” 是一個包含鑽石價格和屬性的資料集。這個資料集通常用於示範 Seaborn 中的數據可視化功能和統計分析。 “diamonds” 資料集包含了各種鑽石的屬性和價格信息。這些屬性包括鑽石的重量(克拉)、切工、顏色、淨度等,而價格則是以美元為單位。 這個資料集的結構通常包含以下幾個欄位: 這個資料集通常用於示範 Seaborn 中的散點圖、直方圖、盒圖等圖表的繪製,以及數據探索和統計分析。 Categorical …

線性回歸(Linear Regression)

首先,使用make_regression函數生成了一些合成數據,然後將數據分成訓練集和測試集。接著創建了LinearRegression模型的實例,並使用訓練集對模型進行訓練。訓練完成後,打印出了模型的係數和對新數據的預測結果。最後,通過可視化將訓練集和測試集的散點圖以及線性回歸的平面呈現出來。

密度聚類算法(DBSCAN)

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一種密度聚類算法,用於將數據點劃分為多個集群,同時可以識別和排除噪音點。該算法基於以下概念: DBSCAN算法運行步驟如下: DBSCAN的主要優勢是: 總的來說,DBSCAN是一種強大的聚類算法,特別適用於處理具有不同密度和形狀的數據集。