Numpy Peak To Peak

NumPy 函式 ptp() 計算陣列沿指定軸的峰值之差(即峰-峰值)。 這是它的功能: 以下是語法: numpy.ptp(a, axis=None, out=None, keepdims=<no value>) 例如: import numpy as np  # 創建一個陣列 x = np.array([[4, 9, 2, 10], [6, 9, 7, 12]])  # x.shape is (2, 4) # 沿著軸 0 計算峰-峰值  result = np.ptp(x, …

內插法(Interpolation)

內插法是一種數學方法,用於在已知數據點之間估算未知點的值。在內插中,我們假設數據點之間的關係是連續且光滑的,並使用這種關係來預測未知位置的數值。 具體來說,當我們有一組離散的數據點,但我們想要在這些點之間的某個位置獲得更多的數據時,我們就可以使用內插法。它通常用於曲線擬合和數據補充的情況下,幫助我們理解數據的行為、預測趨勢或填補缺失的數據。 在內插中,我們根據已知的數據點來建立一個函數或曲線,該函數或曲線在這些點上通過已知的數據點,並且在這些點之間是連續且光滑的。然後,我們使用這個函數或曲線來估算我們感興趣的位置的值。 內插法有很多種類,包括線性內插、多項式內插、樣條內插等。選擇適當的內插方法取決於數據的特性和應用的需求 SciPy提供了十幾種不同的插值函數,從簡單的單變量情況到複雜的多變量情況。當樣本數據可能由一個獨立變量引導時,使用單變量插值,而多變量插值則假設存在多個獨立變量。 內插法有兩種基本方法:(1)對整個數據集擬合一個函數或(2)用多個函數擬合數據集的不同部分,其中每個函數的連接部分平滑地連接在一起。 我們接下來使用一個複雜的邏輯來產生數據,再使用Scipy的內插(擬合)函式來找出合適的資料模型函式。