PCB 插件有無檢測
客戶需求:希望視覺檢測系統可以將PCB板上的插件位置進行檢測,判斷該插件的位置是否有組裝? 透過利用2D相片的明顯特徵來辨識是否有插件,是一種常見的工業視覺應用。在這種情況下,我們依賴於圖像中的輪廓、顏色、紋理等特徵來檢測和識別插件的存在。這種方法基於計算機視覺領域的圖像處理技術和模式識別算法,例如邊緣檢測、特徵提取、模板匹配等,以實現對目標物體的自動檢測和識別。 而當需要獲取插件位置的高度信息時,我們可以採用3D掃描技術。3D掃描器可以利用光學或激光等方法對物體進行掃描,從而獲取其三維形狀和表面信息。通過對掃描得到的數據進行處理和分析,可以準確地確定插件的位置和高度信息。這種技術在工業自動化和質量控制等領域具有重要應用,為生產過程提供了精確的位置信息。 此外,Depth from Focus(DFF)技術以及多光譜成像技術也可以用於獲取插件位置的高度信息。Depth from Focus技術利用圖像中不同區域的焦點位置信息來推斷物體的深度,從而實現對插件位置的高度測量。而多光譜成像技術則利用不同波長的光對物體進行成像,通過分析不同波長光照射下的圖像特徵,可以獲取插件位置的高度信息。 綜上所述,通過結合2D相片的明顯特徵識別插件的存在,以及利用3D掃描技術、Depth from Focus技術和多光譜成像技術獲取插件位置的高度信息,可以實現對插件的準確檢測和位置測量,從而為工業生產和質量管理提供可靠的支持。 首我們使用結構相似性指數(SSIM)是一種用於評估兩幅2D圖像之間相似度的指標,它不僅考慮了亮度的相似性,還考慮了對比度和結構的相似性。SSIM是一種全局性指標,它通常被認為比傳統的均方誤差(MSE)和峰值信噪比(PSNR)更能準確地反映人類主觀感知。 SSIM的理論背景可以通過以下三個關鍵概念來解釋: 綜合以上三個方面,SSIM結合了亮度、對比度和結構的相似性來計算兩幅圖像之間的相似度。SSIM的範圍是從-1到1,其中1表示完美相似性,0表示無相似性,-1表示完全不相似。因此,較高的SSIM值意味著兩幅圖像越相似。 2D實驗影像1: SSIM = 0.40 2D實驗影像2: SSIM = 0.46 接下來我們將Depth from Focus(DFF)是一項用於從圖像中獲取深度信息的技術來進行實驗。它基於光學焦點原理,利用圖像中不同部分的清晰度來推斷物體的深度信息。以下是有關Depth from Focus的基本概念: 焦點原理:在光學中,焦點是光線匯聚的點,是圖像的清晰部分。當物體與鏡頭的距離不同時,其在圖像中的焦點位置也會不同。 Depth from …